How to start an application security program for application security

CETEM and CEM for vulnerability management

Vulnerabilities and the problem of scale for cloud and application security

Vulnerability management is identifying, evaluating, treating, and reporting on security vulnerabilities in systems and the software that runs on them. 

This process, together with the vulnerability assessment, forms the lifecycle of vulnerability. 

Security vulnerabilities refer to a technological weakness of a system, software, infrastructure, cloud taht a threat actor. could exploit 

Why is vulnerability management becoming so vital today?

Vulnerability management is becoming ever so vital due to the increased complexity of the technology stack and more alerts from various vulnerability assessment tools.

The usual step at the lower maturity level of a vulnerability assessment and analysis is to assess all the vulnerabilities individually. With an average vulnerability assessment report containing 2000 individual vulnerabilities, this effort becomes quickly overwhelming. 

Security professionals triage vulnerabilities daily and face the challenge of too many alerts coming from all parts of the organization and technology stacks.

According to the Verizon Data Breach investigation report, Vulnerabilities mismanagement is one of the four factors that leads to vulnerabilities. 

According to research from the Ponemon Institute, 53% of companies spend more time navigating manual processes than actually responding to vulnerabilities.

Due to recent changes in vulnerability declaration, and related time to fix vulnerabilities under CISA BOD 22-01, time to fix vulnerabilities is becoming shorter and more critical.

With the current trend of 35% more CVE declared yearly and security teams being unable to cope with the stress and quitting, 54% of security professionals are considering a career change, it is ever more important to focus on the vulnerabilities that matter most.

Steps of the vulnerability lifecycle 

According to a recent Gartner research on vulnerability management is now evolving in Continous Threat and Exposure Management (CTEM) and becoming a new de facto standard for the vulnerability lifecycle. 

The steps of the process start with

1 – Scoping, Aggregate and consolidate – 

  • Scope the part of the organization that will be subject to the vulnerability management process, Caveat, a lot of organizations start this process too wide and get frustrated quickly. Start small, iterate, and expand
  • Aggregate & Correlate the vulnerability – this part of the process will be iterative and enable cleaning up, deduplicate and prioritising based on the relationship between assets

 2 – Map to business – Correlate business application and environment (cloud, endpoint, containers …) to different parts of the business. This enables the traceability of who owns what and who is responsible for fixing the vulnerabilities. 

3 – Prioritization – Correlation, Contextualization and risk assessment of the vulnerabilities  evaluating the impact and likelihood of exploitability

4 – Triage and Risk assessment – Assessment of the vulnerabilities in their context to determine which one is a true positive or a false positive. This process also includes risk acceptance/assessment and vulnerability exceptions. At this stage, you can start setting a risk tolerance level, and how risky / non-risky you want to be

5 – ACT –  this stage is the execution phase. Plan with teams on what to fix and when, and identify the vulnerabilities that are more at risk (from the prioritization) 

As the CTEM or CEM process depends much on collaboration, the remediation is a collaborative effort between the team assessing and implementing the vulnerability, the rest of the business

What are the areas in scope for vulnerability management 

During vulnerability assessment, the areas that can benefit from vulnerability management are:

Software supply chain security

  • SAST – Static Code Analysis 
  • DAST – Dynamic code analysis assessing 
  • SCA – vulnerability assessment of libraries
  • CI/CD Security – vulnerability assessment of pipelines used to build software
  • SBOM – list of artefacts in a software (with possible vulnerabilities attached to it)
  • Purchased/Built Software – Software being purchased and used as is (usually subject to patches) 

Environmental Security

  • Cloud Security –  vulnerability assessment of cloud environments ( like AWS, Azure, GCP), their misconfiguration and vulnerabilities
  • Network Security
  • Infrastructure Security / Endpoint Security –  vulnerability assessment of servers and endpoints
Phoenix Security Vulnerability Managment Evolution Model

Vulnerability Maturity Model Levels

The levels of maturity measure from very immature (L0) to highly mature (L5). The methodologies considered vary from an absent process (L0) to a more data-driven measured, and controlled process (L5). 

We look at several maturity models from NIST to NCSC guidance and SANS. Despite being good guidance, they are disjointed and look at the problem, not from a risk perspective.

In an effort to improve vulnerability management maturity calculation and move towards a more risk-based approach, we created a model that encompasses application security, patching, vulnerability management, and cloud security. 

Every organisation should go through different maturity levels and SLA/SLO exercises. The following is a good indication of maturity level.


Maturity 0 (mapped to SANS VMM Level 1) – Non Existent
No Asset Register
No Scanning Capabilities
No Vulnerability Management Process
No-Risk assessment of vulnerabilitiesOccasional pentest or manual assessment
No scanning capabilities

Measurement:No measurement or basic pentest results/fixed Maturity 1 (mapped to SANS VMM Level 1) –
Scanning – Some scanning capabilities (early stage)No Asset RegisterOne or two scanners (infrastructure, code) Some Pentesting activity (internal/external)No Vulnerability management processJust Fix vulnerabilities when there is time.Vulnerabilities are fixed when and if discoveredMeasurement:Number of vulnerabilities fixed by severity from the output of each scanner

When organisations are at maturity 1-2, the best and most efficient way is to start with a smaller team, scan and document assets, and demonstrate good control on those projects. 

After this it is easier to replicate the model at scale with a systematic approach while teams get gradually more mature. 


Maturity 2 (mapped to SANS VMM Level 2)Scanning Code, Assessing software with DAST or some dynamic application testing capabilitiesExternal attack surface tested Critical assets pentested regularlyManual triage or some Basic SLA (for a whitepaper on SLA see here) Vulnerabilities fixed when and if discoveredNo asset management or some basic levelSome non formalised vulnerability management processNo risk acceptance or assessment processMeasurement:Number of vulnerabilities fixed by severity from the output of each scanner
Maturity 3 (mapped to SANS VMM Level 3)
Start Using SLA for the whole  (for a whitepaper on SLA see here) Policy & mandate when SLA fix Some basic level of the vulnerability management process, Some basic level of asset managementNo major measurement of vulnerabilities Not a consistent measurement of resolutionMeasurement:Number of vulnerabilities fixed by severity from the output of each scannerSLA Based vulnerability resolution time: Critical, High Medium low resolved at different time

Maturity 4 (mapped to SANS VMM Level 4)Start Using SLA for the whole organisation. Consistent use of Severity Based SLAMove to Exposure Based SLA or Risk based SLAConsistent Pipeline approach for vulnerabilities scanning Scheduled/Regular Pentest, assessmentVulnerabilities fixed when and if discovered
No asset managementMasurements
SLA Based vulnerability resolution time: Critical, High Medium low resolved at different timeRisk based resolution times
Team Security OKr (or beginning of)Risk based vulnerability measurement and resolution 


Maturity 5 (mapped to SANS VMM Level 4)Creating Customised SLA/ SLO for different teams/complexity. Implementing SLA Levels based on Type of asset and risk Consistent use of Severity Based SLAMove to Exposure Based SLA or Risk based SLAEmbedded in Feedback LoopsCreating feedback loops to Customise SLA / SLO for systems in different categories. Confidently breaking pipeline
Using team’s OKR to: Burning down regularly the Backlog of vulnerabilitiesSlack and ticketing system used actively to deliver vulnerabilities resolution to teamsMeasuring team performance & feeding it to higher managementProduct owner report on vulnerability resolution and riskRisk-based approach to vulnerability burndownScheduled/Regular Pentest, assessmentVulnerabilities fixed when and if discoveredAutomatic asset management driven by either the vulnerability scanners, CI/CD, cloud services Measurements:Measured Vulnerability management processStart measuring and feedback the Mean Time To Resolution (MTTR) and Mean Time Open (MTO).  Measuring Vulnerability timelinesTeam Security OKr: Self imposed and agreed objectives with Security teamsRisk based vulnerability measurement and resolution 

For a more comprehensive view of Maturity Models in DevSecOps refer to the modern application security and DevSecOps Book 

For a more comprehensive list of Maturity in vulnerability management, refer to the SANS Maturity Model 


How can Phoenix Security Platform help? 

Phoenix Security risk based vulnerability management for application and cloud security
Phoenix Security risk-based vulnerability management for application and cloud security

Technology is not the holy grail or answer to all the problems. Vulnerability management remains a people & culture, process, and technology problem. 

Phoenix security cloud platform can help automate, correlate and track maturity at scale and facilitate the enforcement of measurements. 

Phoenix offers a way to scale triaging and prioritising vulnerabilities, removing the manual part of security analysis and enabling the security team to scale better, from a 1:10 to 1:40 ratio, react faster (from 290 days average resolution time to 30) and be more efficient in the time spent on each vulnerability. 

With a proven methodology adopted by more than 1000 Security professionals, Phoenix enables security engineers to communicate more effectively with the business in terms of risk and loss as well as automatically prioritise vulnerabilities for developers

Francesco is an internationally renowned public speaker, with multiple interviews in high-profile publications (eg. Forbes), and an author of numerous books and articles, who utilises his platform to evangelize the importance of Cloud security and cutting-edge technologies on a global scale.

Discuss this blog with our community on Slack

Join our AppSec Phoenix community on Slack to discuss this blog and other news with our professional security team

From our Blog

Phoenix Security has integrated Semgrep to enhance code-to-cloud security coverage, bringing high-performance static analysis and Software Composition Analysis (SCA) into its Application Security Posture Management platform. This integration empowers DevSecOps teams with faster triage, contextual vulnerability management, and precise prioritization across cloud-native environments including AWS, Azure, and GCP.
Alfonso Eusebio
The team at Phoenix Security pleased to bring you another set of new application security (ASPM) features and improvements for vulnerability management across application and cloud security engines. This release builds on top of previous releases with key additions and progress across multiple areas of the platform. Application Security Posture Management (ASPM) Enhancements • New Weighted Asset Risk Formula – Refined risk aggregation for tailored vulnerability management. • Auto-Approval of Risk Exceptions – Accelerate mitigation by automating security approvals. • Enhanced Risk Explorer & Business Unit Insights – Monitor and analyze risk exposure by business units for better prioritization. Vulnerability & Asset Management • Link Findings to Existing Tickets – Seamless GitHub, ServiceNow, and Azure DevOps integration. • Multi-Finding Ticketing for ADO – Group multiple vulnerabilities in a single ticket for better workflow management. • Filter by Business Unit, CWE, Ownership, and Deployment Environment – Target vulnerabilities with precision using advanced filtering. Cyber Threat Intelligence & Security Enhancements • Cyber Threat Intelligence Premium – Access 128,000+ exploits for better exploitability and fixability metrics. • SBOM, Container SBOM & Open Source Artifact Analysis – Conduct deep security analysis with reachability insights. • Enhanced Lacework Container Management – Fetch and analyze running container details for better security reporting. • REST API Enhancements – Use asset tags for automated deployments and streamline security processes. Other Key Updates • CVE & CWE Columns Added – Compare vulnerabilities more effectively. • Custom Status Management for Findings – Personalize security workflows with custom status configurations. • Impact & Risk Explorer Side Panel – Gain heatmap-based insights into vulnerability distribution and team risk impact. 🚀 Stay ahead of vulnerabilities, optimize risk assessment, and enhance security efficiency with Phoenix Security’s latest features! 🚀
Alfonso Eusebio
We don’t need more tools. We need a new way of thinking. Application Security Posture Management (ASPM) promises the world, but most teams crumble under tool sprawl, silos, and endless ticket queues. That’s why I built IronClad™ — a brutally simple, brutally effective operating model that fuses ASPM with decentralized ownership and ruthless clarity. This isn’t theory. It’s how security teams can actually win: small empowered squads, zero ambiguity, and mission-first remediation. If you’re tired of drowning in dashboards and ready to rethink how your teams build, secure, and scale, this is the blueprint. 👉 Read how ASPM + IronClad™ flips the script on vulnerability management.
Phil Moroni
As cyber threats become increasingly sophisticated, the need for a more proactive and comprehensive approach to vulnerability management is undeniable. A threat-centric methodology, when combined with advanced tools like Agentic AI and Application Security Posture Management (ASPM), offers organizations the ability to predict and mitigate vulnerabilities before they are exploited by threat actors. This article delves into how leveraging threat intelligence, exposure and reachability analysis, and contextual risk assessments can help organizations stay ahead of cyber threats, specifically focusing on high-risk vulnerabilities like remote code execution (RCE) and memory corruption. Through case studies like Citrix ADC and MOVEit Transfer, the article highlights the growing trend of zero-day exploits and emphasizes the importance of a proactive, data-driven security strategy. In a world where vulnerabilities are constantly targeted, adopting a threat-centric approach is not just a best practice—it’s essential to ensuring long-term security. For startups, the focus is clear—establish visibility and ensure core security practices are in place. Application Security Posture Management (ASPM) tools provide a straightforward, automated approach to detecting vulnerabilities and enforcing policies. These solutions help reduce risk quickly without overburdening small security teams. Mature organizations, on the other hand, are tackling a different set of problems. With the sheer number of vulnerabilities and an increasingly complicated threat landscape, enterprises need to fine-tune their approach. The goal shifts toward intelligent remediation, leveraging real-time threat intelligence and advanced risk prioritization. ASPM tools at this stage do more than just detect vulnerabilities—they provide context, enable proactive decision-making, and streamline the entire remediation process. The emergence of AI-assisted code generation has further complicated security in both environments. These tools, while speeding up development, are often responsible for introducing new vulnerabilities into applications at a faster pace than traditional methods. The challenge is clear: AI-generated code can hide flaws that are difficult to catch in the rush of innovation. Both startups and enterprises need to adjust their security posture to account for these new risks. ASPM platforms, like Phoenix Security, provide automated scanning of code before it hits production, ensuring that flaws don’t make it past the first line of defense. Meanwhile, organizations are also grappling with the backlog crisis in the National Vulnerability Database (NVD). A staggering number of CVEs remain unprocessed, leaving many businesses with limited data on which to base their patching decisions. While these delays leave companies vulnerable, Phoenix Security steps in by cross-referencing CVE data with known exploits and live threat intelligence, helping organizations stay ahead despite the lag in official vulnerability reporting. Whether just starting their security program or managing a complex infrastructure, organizations need a toolset that adapts with them. Phoenix Security enables businesses of any size to prioritize vulnerabilities based on actual risk, not just theoretical impact, helping security teams navigate the evolving threat landscape with speed and accuracy.
Francesco Cipollone
The journey of securing an organization’s application landscape varies dramatically, depending on where a company stands in its maturity. Early-stage startups with small security teams face challenges not only with vulnerabilities but also with scaling their security processes in line with their growth. On the flip side, established enterprises struggle with managing complex environments, prioritizing remediation, and dealing with vast amounts of vulnerabilities while staying ahead of sophisticated threats. For startups, the focus is clear—establish visibility and ensure core security practices are in place. Application Security Posture Management (ASPM) tools provide a straightforward, automated approach to detecting vulnerabilities and enforcing policies. These solutions help reduce risk quickly without overburdening small security teams. Mature organizations, on the other hand, are tackling a different set of problems. With the sheer number of vulnerabilities and an increasingly complicated threat landscape, enterprises need to fine-tune their approach. The goal shifts toward intelligent remediation, leveraging real-time threat intelligence and advanced risk prioritization. ASPM tools at this stage do more than just detect vulnerabilities—they provide context, enable proactive decision-making, and streamline the entire remediation process. The emergence of AI-assisted code generation has further complicated security in both environments. These tools, while speeding up development, are often responsible for introducing new vulnerabilities into applications at a faster pace than traditional methods. The challenge is clear: AI-generated code can hide flaws that are difficult to catch in the rush of innovation. Both startups and enterprises need to adjust their security posture to account for these new risks. ASPM platforms, like Phoenix Security, provide automated scanning of code before it hits production, ensuring that flaws don’t make it past the first line of defense. Meanwhile, organizations are also grappling with the backlog crisis in the National Vulnerability Database (NVD). A staggering number of CVEs remain unprocessed, leaving many businesses with limited data on which to base their patching decisions. While these delays leave companies vulnerable, Phoenix Security steps in by cross-referencing CVE data with known exploits and live threat intelligence, helping organizations stay ahead despite the lag in official vulnerability reporting. Whether just starting their security program or managing a complex infrastructure, organizations need a toolset that adapts with them. Phoenix Security enables businesses of any size to prioritize vulnerabilities based on actual risk, not just theoretical impact, helping security teams navigate the evolving threat landscape with speed and accuracy.
Francesco Cipollone
The cybersecurity world is reeling as MITRE’s funding for the CVE and NVD systems expires, disrupting the backbone of global vulnerability management. As traditional sources like the National Vulnerability Database collapse under funding cuts and submission backlogs, security teams face delays, incomplete data, and loss of automation in remediation pipelines. This isn’t just a data problem—it’s a structural crisis for application security and vulnerability correlation. In this landscape of uncertainty, Phoenix Security’s ASPM platform steps up with a code-to-cloud correlation engine that doesn’t depend on outdated data workflows. By connecting code-level insights (including tools like Semgrep) to runtime and cloud environments, Phoenix enables faster, context-aware vulnerability remediation—even as NVD and CVE pipelines deteriorate. This article dives into the implications of the CVE shutdown and how Phoenix Security is helping security and development teams transition to a resilient, correlation-first approach to cybersecurity.
Francesco Cipollone
x  Powerful Protection for WordPress, from Shield Security
This Site Is Protected By
ShieldPRO